Version of Record: https://www.sciencedirect.com/science/article/pii/S0272771421002390 Manuscript_6da29964ff75dba4080ff723a0a1194c

1 Title Page

2	Title: Wetlands in intermittently closed estuaries can build elevations to keep pace with sea-level
3	rise
4 5	Authors: Karen M. Thorne ^{1*} , Kevin J. Buffington ¹ , Scott F. Jones, ¹ , and John L. Largier ²
6	
7	¹ U.S. Geological Survey, Western Ecological Research Center, One Shields Ave. Davis, CA, 95616
8	² University of California, Davis, Environmental Science & Policy and Coastal & Marine Sciences
9	Institute, P.O. Box 247, Bodega Bay, CA 94923
10	*Corresponding author, kthorne@usgs.gov, 916-502-2996
11	
12	Key words: estuary, California, marsh, modeling, climate change
13	
14	Abstract
15	Sea-level rise is a threat to coastal ecosystems, which have important conservation and economic
16	value. While marsh response to sea-level rise has been well characterized for perennially open
17	estuaries, bar-built intermittently-closed estuaries and their sea-level rise response are seldom
18	addressed in the literature – despite being common globally. Here, we show that annual closures
19	can play a critical role in maintaining marsh elevations by trapping fluvial sediments that can
20	accrete on the marsh plain. We seek to advance the conceptual understanding of sea-level rise
21	response of marshes by incorporating the unique nature of intermittently-closed estuaries in a
22	marsh model. We hypothesize that intermittently-closed-estuary marshes may be more resilient
23	to sea-level rise than open-estuary marshes due to greater initial elevation capital and higher

24 accretion rates due to closure events. Using California, USA as a case study, spatial analysis 25 shows that marshes in intermittently-closed-estuaries had significantly greater elevations (\bar{x} = 26 1.93 m \pm 0.2 standard error, n = 14) than marshes in permanently open estuaries ($\bar{x} = 0.94$ m \pm 27 0.1 standard error, n = 8; P = 0.001). We then used a process-based model to determine marsh elevation change under 840 simulated responses to sea-level rise scenarios to 2100. Our 28 29 modeling shows that regular annual mouth closure can promote accretion rates and increase 30 marsh elevations fast enough to match even high rates of sea-level rise, as fluvial sediment 31 pulses can be captured in the estuary. Modeled suspended sediment concentration had the 32 strongest effect on accretion, followed by probability of annual mouth closure. Intermittently 33 closed estuaries are critical environments where marshes may be sustained under high rates of 34 sea-level rise, thus reducing the anticipated global loss of these important ecosystems. Our 35 results demonstrate an important gap in the knowledge about marsh accretion and identifies 36 research needs to inform coastal management.

37

1. Introduction

38 Estuaries are transition spaces between land and sea that are remarkably productive ecosystems 39 and provide important services to human society (e.g., Brander et al. 2006), but are vulnerable to 40 environmental alteration and climate change (Morris et al. 2002; Cahoon et al. 2006; Shile et al. 41 2014, Thorne et al. 2018). The severity and evidence of sea-level rise is well documented 42 globally; however, sea-level rise rates are largely uncertain in the later parts of this century as 43 they are dependent on global greenhouse gas emission scenarios (Mather et al. 2009, Bonaduce 44 et al. 2016, IPCC 2018, Rojas et al. 2018). Accelerations in sea-level rise and other climate 45 change drivers will create novel and, in many cases, extreme environmental conditions in 46 estuaries with unknown ecosystem consequences.

47 Estuaries are traditionally thought of as open to the ocean with one or more rivers or 48 streams flowing into them creating a brackish environment. However, in some estuaries the 49 entrance is not permanently open to the ocean but shifts between open and closed states 50 (McSweeney et al. 2017a), a phenomenon that has led to recent redefinition of an 'estuary' (Day 1981, Whitfield and Elliott 2012). These bar-built intermittently closed estuaries (ICE, Figure 1) 51 52 may take many forms but are typically found on wave dominated coasts, characterized by small 53 tidal prisms, high sediment supply and variable river or creek inflow that allow waves to build a 54 sand barrier across the mouth. ICE mouth closure frequency is dependent on local hydrologic, 55 geomorphic, and ocean conditions (Behrens et al 2013, McSweeney et al. 2017a, Kjerfve 1986, 56 1994). There is a spectrum of closure frequency within and across ICE, with a single seasonal 57 closure being most common and irregular episodic closures observed in some systems (Elwany 58 et al. 1998, Morris and Turner 2010; McSweeney et al. 2017a; Winter 2020). ICE can be 59 disconnected from the ocean for days or even years, creating an impounded lagoon behind the 60 sand barrier with variable water levels depending on the net water budget (Figure 1). Closed 61 ICE water levels can be highly variable which can vary across climatic regions and with seasons 62 or time (Schallenberg et al. 2010, Clark and O'Connor 2019). Water levels in ICE depend on 63 when the closure occurs, local watershed flows, seepage through barrier, wave overwash and 64 evaporation rates (Stretch and Parkinson 2006).

Figure 1. Conceptual model of the biophysical marsh processes and water levels for *intermittently closed estuaries (ICE). ICEs are closed to ocean influence a portion of the time usually by a sand-built berm which can be breached by waves and/or high watershed flows. Marshes (green) in ICE have higher marsh platforms when compared with marshes in perennial open estuaries.*

65

72 The timing and frequency of mouth closure depends on complex interactions between 73 sediment import and export driven by waves, tidal exchange, and river discharge (Whitfield et al. 74 2012; Behrens et al 2013, 2015). Waves create a berm that can partially or completely block the 75 lagoon inlet. However, if tidal currents or fluvial discharge are large enough (relative to wave 76 forcing), the lagoon inlet will not close. When the mouth is closed, river inflow can fill the basin 77 and lead to overflow and re-opening of the mouth through scouring of a new channel (Rich & 78 Keller 2013; Behrens et al 2015). ICE therefore exhibit closure patterns linked to seasonality in 79 waves and river discharge. During closure events, tidal action and ocean sediment input are 80 halted while river inflows and sediment influx can continue influencing marsh accretion

processes. These riverine flows may be the dominant driver of inlet opening or closing on
timescales longer than a few years (Elwany et al. 1998).

83 ICEs are found worldwide and make up over 15% of microtidal (< 2 m tidal range) 84 estuaries (McSweeney et al. 2017b), they are rare in mesotidal regions and absent in macrotidal regions (Figure 2). Often found in Mediterranean-climate zones due to seasonal rainfall patterns 85 and microtidal systems, geographical hotspots include California with over 70% of local 86 87 estuaries categorized as lagoons (Elwany 2011; Behrens et al 2013, Heady et al. 2014), Australia 88 (Hodgkin and Hesp 1998; Morris & Turner 2010), South Africa (James et al. 2007; de Lecea 89 2016), Chile (Bertrán et al. 2006), Portugal, and in the Mediterranean Basin itself (Pérez-Ruzafa 90 et al. 2011). California ICEs represent a globally-important resource; in southern CA alone they make up more than 5% of global ICEs, and a larger percentage of Mediterranean-climate ICEs 91 92 (McSweeney et al. 2017b). California ICE are especially vulnerable ecosystems, as they are 93 small and easy to modify as well as located near rapidly expanding urban centers or agriculture 94 landscapes which can alter watersheds and diversity (Riley et al. 2005; White and Greer 2006). 95 These ICEs are known for their biodiversity and contributions to the economic viability of the surrounding communities (Kwak 1997; Danovaro 2007; Barnes et al. 2008). ICEs are one of the 96 97 most sensitive estuary types to human activities (Boyd et al. 1992); over the last hundred years, 98 many ICEs have undergone drastic adverse effects from human modifications to the system that 99 include disturbance in water inflow and outflow, mouth stability, runoff from urban areas, 100 salinity balance changes, and invasion of species (Cohen et al. 2005; He and He 2008; Gittman et 101 al. 2015).

Figure 2. Intermittently closed estuaries (ICE) occur worldwide and are documented in most
microtidal estuaries (black lines adapted from McSweeney et al. 2017b). Sea-level rise rates
vary globally making it difficult to interpret impacts to ICEs (dataset modified from Hamlington
et al. 2011). A) Santa Ynez, CA (NRC 2012); B) Mijares, Spain (Bonaduce et al. 2016); C) Cau
Hai, Vietnam (Tran et al. 2017; D) Lake Budi, Chile (Rojas et al. 2018); E) Mgwalana, South
Africa (Mather et al. 2009); F) Stokes, Australia (White et al. 2014). The scale bar represents 1
km.

112	The extent of emergent marshes in ICE varies substantially across regions and is largely
113	unknown, but assumed to be related to closure frequency, inundation, salinity, and freshwater
114	inputs (Figure 1). Coastal marsh plants have varying tolerances of inundation and salinity (Schile
115	et al. 2011; Janousek et al. 2016), and their presence or productivity in ICE may be largely

116 influenced by closure frequency and freshwater inputs. Zedler et al. (1980) found that 117 elimination of tidal flow due to lagoon closure decreased primary productivity without 118 freshwater flow; however, if freshwater runoff was present, primary production increased. Coastal marshes may 'keep pace' with sea-level rise through enhanced organic 119 120 production (Morris et al. 2002) and mineral accretion rates (Kirwan et al. 2010), but high rates of 121 sea-level rise are likely to overwhelm their natural soil building ability leading to submergence 122 over the century (Thorne et al. 2018, Kirwan et al. 2010). Marsh accretion can be composed of 123 mineral contributions from both oceanic and fluvial sources (Reed 1995). There is extensive 124 literature on how marsh biophysical feedbacks in permanently open estuaries can facilitate 125 accretion with sea-level rise (e.g., Reed 1995, Morris et al. 2002, Swanson et al. 2014); however, 126 biophysical feedbacks in ICE marshes are complicated by mouth closure and loss of ocean 127 connectivity, and this type of information is largely missing from the literature. Here, we seek to 128 advance the understanding of marsh processes by incorporating the unique accretion nature of 129 ICE marshes into understanding of sea-level rise vulnerability. 130 This study aims to use the region of California, USA to evaluate marsh accretion for a 131 range of sea-level rise scenarios in an archetype ICE. We hypothesize that lagoon closure 132 increases marsh accretion regardless of other negative effects of closure (e.g., vegetation biomass 133 loss, compaction). Specifically, we 1) conducted an elevation assessment of marshes in ICEs and permanently open estuaries throughout California, and 2) modeled an ICE marsh to test the 134 135 sensitivity of accretion to mouth closure frequency to identify the key inputs that control 136 elevation outcomes by 2100 under sea-level rise scenarios. The information gained in this case 137 study can inform the management and scientific understanding of ICE marshes in other settings.

138

139 2. Materials and Methods

140 2.1 Case study region

141 ICE in California have mixed semi-diurnal tides and tend to be shallow with small river/creek 142 inflow. These fluvial inflows are important for opening the mouth following winter rain events, 143 but at other times the mouth state is primarily controlled by tidal prism and closures are driven 144 by wave events (Behrens et al 2013, 2015; Harvey et al 2020). Interannual variability in closure 145 follows rain/river flow cycles as well as mouth management strategies (Elwany et al. 1998; 146 Winter 2020). Salt marsh soils across California estuaries are characterized by mineral sediments 147 and typically have low (<20%) organic matter content (Callaway et al. 2012; Thorne et al 2016; 148 Hinson et al. 2017). Emergent vegetation communities in these marshes are dominated by salt 149 tolerant species such as Frankenia salina, Jaumea carnosa, Salicornia pacifica as well as 150 freshwater genus Alnus sp., Juncus sp. and Salix sp. (Thorne et al 2016, Clark and O'Connor 2019). Summer salinity in California ICEs can be above 25 PSU with water temperatures within 151 152 portions of the estuary above 30 degree C and dissolved oxygen concentrations can range from 0 mgL⁻¹ to 20 mgL⁻¹ (Largier et al 2015; Clark and O'Connor 2019). 153

154

155 2.2 ICE marsh characterization

156 We examined marsh elevation across 22 California estuaries using available Lidar data (2009-

157 2011 NOAA National Ocean Service Office for Coastal Management, CA Coastal Conservancy

158 Coastal Lidar Project) and National Wetland Inventory (NWI) data (Figure 3). We used the

159 NWI database to delineate marshes, assumed that all vegetated estuarine classifications were

- 160 emergent wetlands, and used their extent to calculate mean elevations from a lidar-derived digital
- 161 elevation model. We recognize that lidar may not reliably penetrate to the marsh surface

162	(Buffington et al 2016), however for this analysis we assumed that the vertical bias would be
163	relatively consistent across sites. Additionally, these types of estuaries in California are typically
164	dominated by short-stature vegetation (Thorne et al 2016) so vertical bias can be small. We
165	categorized each estuary as either open year-round to ocean influence or as intermittently closed
166	based on a literature review, expert knowledge, and google earth exploration (Table 1). We
167	compared mean marsh elevation (relative to MSL) between open and intermittent estuary types
168	for California estuaries using two-sample t-tests in R (R Core Team 2016).

	Estuary Watershed	Marsh Area	Mean Marsh	Marsh	
Site	Type	A rea (km^2)	Area (km^2) (ha)		elevation
	Type	/iicu (kiii)	(114)	MSL (m)	(std dev)
Bolinas Lagoon	Open	49	7	1.43	0.12
Elkhorn Slough	Open	403	363	0.48	0.35
Morro Bay	Open	200	161	0.75	0.36
Mugu	Open	510	499	0.99	0.46
Seal Beach	Open	224	261	0.58	0.31
Upper Newport	Open	394	184	0.73	0.39
Agua Hedionda	Open	77	30	1.21	0.55
Tijuana River	Open	4532	276	1.34	0.69
Russian River	Intermittent	3846	16	1.98	0.82
Pescadero	Intermittent	209	84	1.34	0.19
Scott Creek	Intermittent	77	7	2.12	0.53
Salinas River	Intermittent	8622	92	1.33	0.27
Guadalupa River	Intermittent	4734	32	3.11	0.38
San Antonio Creek	Intermittent	395	2	3.65	1.17
Santa Ynez River	Intermittent	2322	129	2.40	0.63
Goleta Slough	Intermittent	71	70	1.46	0.72
Ventura River	Intermittent	584	2	1.81	0.20
Santa Clara River	Intermittent	4165	63	2.62	0.49
Malibu	Intermittent	196	9	1.34	0.92
Santa Margarita River	Intermittent	404	66	1.54	0.49
San Elijo	Intermittent	496	108	1.24	0.34
Los Penasquitos	Intermittent	197	85	1.10	0.41

176 *Table 1.* Site list and local characteristics for California estuaries used in the spatial analysis.

178 2.3 Closure scenario modeling

We modified a 1-D wetland soil cohort model (WARMER, Swanson et al. 2014) to explore tidal
marsh elevation responses to lagoon closure with sea-level rise. The adapted WARMER -Lagoon
(hereafter WARMER-L) model that we present here considers the dominant above- and below-

182 ground processes that control elevation relative to mean sea level and can be summarized with183 the general equation:

 $Z_{t+1} = Z_t + Q_{zt} + B_{zt} - D_t - R_t - \Delta S_t$

184

185	where Z_t is wetland elevation relative to mean sea level at time t, Q_{zt} is accumulated mineral
186	deposition at elevation Z between years t and t+1, B_{zt} is accumulated total organic production
187	over the year at elevation Z, D_t is the accumulated decomposition over a year, R_t is accumulated
188	mass-dependent compaction of soil cohorts over a year, ΔS_t is the amount of sea-level rise over
189	the year, and t is time where $\Delta t = (t+1) - t = 1$ year. Vegetation on wetlands slows water
190	velocities through friction, resulting in minimal erosion of the wetland surface (Leonard and
191	Luther 1995; Christiansen et al. 2000; Möller 2006), thus erosion is assumed to be zero in this
192	model. The model captures vertical wetland accretion processes at a given location and we use it
193	to compare responses across a range of closure and sea-level rise scenarios.

194 We assumed organic matter production was a unimodal function of marsh elevation, with 195 peak biomass occurring at a given elevation, and set to zero at MSL and the elevation of 196 maximum observed tide. We calibrated the amplitude of this function to match empirical 197 accumulation rates derived from soil cores dated with cesium-137 and sampled at a range of 198 elevations. The decomposition and compaction functions were left unchanged from the original 199 description in Swanson et al. (2014). Briefly, decomposition occurs on the labile fraction of 200 organic matter, estimated from soil characteristics, at rates dependent on age (1, 2, or 3+ year) 201 and depth in the soil. Compaction of a soil cohort depends on the overlying mass, with initial and 202 bottom porosity estimated from soil cores provided as model inputs.

12

(1)

The mineral deposition function was adjusted to account for the influence of lagoon closure and fluvial sediment input to the estuary and is the primary factor that accounts for the changes between the scenarios we considered. Deposition followed Marani et al. (2010),

$$Q_{zt} = Q_{st} \tag{2}$$

207 where Q_{zt} is the total accumulated mineral deposition (g/m²) and Q_{st} is the deposition due to 208 settling. Deposition Q_s was calculated at 15-minute temporal resolution and summed over 1 year 209 to give Q_{zt} We omitted direct capture of sediment by vegetation because of a lack of parameters 210 that describe biomass-stem density and diameter relationships for Pacific coast marsh species; in 211 Atlantic coast systems with slow horizontal flows that are typical of marsh flooding, the 212 proportion of total sediment deposition attributed to direct capture is <10% (Mudd et al 2010). 213 During high tides that inundate the marsh and when the marsh is inundated during closure, we 214 assume a continuous sediment supply with a given suspended sediment concentration (C) and the 215 deposition rate $(g/m^2/yr)$ Q_s given as a function of settling velocity w_s,

216
$$Q_s(t) = w_s C(t)$$
 when marsh is inundated (3)

217 $Q_s(t) = 0$ when marsh not inundated

To account for tidal currents, settling velocity was calculated dynamically from the rate of waterlevel change, such that:

$$w_s = w_x^{dj} \tag{4}$$

where w_x is the maximum settling velocity (0.0002 m/s), d is the absolute change in water depth (m) over the 15-minute time interval, and j is a decay coefficient (log(0.0002/100)/0.4) estimated by calibration using soil core accumulation rates at Tijuana River estuary and a baseline SSC of 7 mg/L. By using a dynamic settling velocity, we assume that most deposition occurs during slack water and deposition is reduced under greater water velocities that occur during ebb and flood flows. Further, during ebb tides, SSC in the water column is reduced as sediment isdeposited on the wetland surface:

228
$$\frac{dC}{dt} = -\frac{Qs}{h} - \frac{C}{h}\frac{dh}{dt}$$
(5)

229 where *dh* is the instantaneous change in water level above the marsh surface, and *h* is water 230 level above the marsh surface. Deposition rate $Q_s=0$ when the water level is below the marsh 231 surface. A continuous function of water level elevation was defined from tidal harmonics at 232 the NOAA San Diego tidal gage station (ID: 9410170), representing the typical mixed tidal 233 regime across California. In order to align waters levels to observed, within estuary 234 observations, water elevations were adjusted +15 cm such that mean high water (MHW) was 235 81.5 cm above MSL and mean higher high water (MHHW) was 92.5 cm above MSL. See 236 Table 2 for more detail on parametrization.

237 We defined multiple scenarios that potentially affect marsh accretion due to lagoon 238 closure. Closure duration can vary widely across ICEs from days to over a year (Behrens et al. 239 2015; Winter 2020), depending on the wave climate and freshwater flows. We set closure 240 duration as a constant six months, typical for many California ICEs and altered interannual 241 frequency (i.e., probability of closure in a given year). Berm height was set to 20 cm above 242 initial wetland elevation and increased at a rate equal to sea-level rise for the given scenario; this 243 assumes that marine sand supply is sufficient to build berms across all sea-level rise scenarios. In 244 the "Flood" scenarios, water elevation was held constant at the height of the berm for a given number of days and $C=C_0$, which assumes that wind-wave-driven resuspension of sediment from 245 246 adjacent mudflats resulted in continuous sediment availability for the duration of the flooding. In 247 the "Pulse" scenarios, we assumed a sediment pulse of varying maximum SSC ($C_k = 100, 250$, 500, 750, 1000 mg L⁻¹) occurred during the breach event at the end of closure, before the mouth 248

is fully open, as pulses of sediment are typical of the first rainfall event in seasonally arid regions (e.g., Rosencranz et al 2015). The sediment concentration during a pulse event $C_p(t)$ was described by an exponential distribution that mimicked SSC observations at Los Penasquitos during rainfall events, with peak concentration C_k occurring on the day the mouth opened. Specifically,

$$254 C_p(t) = C_k e^{-mt} (6)$$

where m is a constant of 0.015 and t is time.

256 To address our primary objective, we explored marsh elevation response to a range of 257 annual lagoon closure probabilities (0, 10, and 100% chance of closure in a given year), linear sea-level rise (2, 4, 6, 8, 10, 12, 15 mm yr⁻¹), baseline sediment supply (2 and 7 mg L⁻¹ average 258 259 annual SSC), "flood" duration (i.e., closed lagoon water level above marsh plain for 3, 6, 12 or 24 days), and sediment pulse scenarios. This was done at an initial marsh elevation (92 cm above 260 261 MSL) that approximates the average marsh elevation from estuaries that are always open (see 262 Table 1). We compared marsh elevation changes across these simulations: (three closure 263 probabilities (0,10, 100%), seven sea-level rise rates $(2, 4, 6, 8, 10, 12, 15 \text{ mm yr}^{-1})$, two baseline 264 SSC (2, 7mg/L), five pulse SSC (100, 250, 500, 750, 1000 mg/L), four flood duration (3, 6, 12, 265 24 days) = 840 scenarios to assess marsh elevation trajectories over 100 years. Marsh accretion 266 and therefore elevation change occurred during open and closed mouth phases of modeling. 267 We analyzed the importance of each modeled factor using random forest and the 'caret' 268 package in R (R Core Team 2016), including suspended sediment concentration, flood duration, 269 sediment pulse concentration, sea-level rise rate, and closure frequency as model input factors 270 with no interactions between factors.

271

273 Table 2. Model parameter values for sea-level rise model simulations for WARMER-L. Initial

274 marsh elevation was set to 92 cm above MSL.

	Parameters	Value	
	Organic density ¹	1.14	
	Mineral density ¹	2.61	
	Porosity (Top) ²	0.87	
	Porosity (Bottom) ²	0.74	
	Refractory Organic Matter (%) ²	7.0	
	Root:Shoot	2	
	Peak OM Elevation (cm, MSL) ²	72.6	
	Peak OM (g m-2 yr-1) ²	351	
	Settling velocity (m s-1) ³	0.0002	
	Particle size $(\mu m)^3$	50	
277 278 279	3. Results		
280			
281	3.1 Marsh Characterization		
282	Marsh elevation and watershed charac	teristics were recorde	ed for both open and intermittently
283	closed estuaries throughout California	(Table 1). Marsh ele	vations were nearly 1 m higher in ICE
284	compared with open bar-built estuarie	s (m above MSL 1.93	3 ± 0.2 for ICE and 0.94 ± 0.1 for
285	open estuaries; $t = 4.1$, $P = 0.001$; Fig	ure 4). This finding n	notivates and supports our modeling
286	assumption that accretion occurs durin	ng closed mouth perio	ds when water level is above the
287	marsh plain elevation.		

289 Figure 4. Average marsh elevation (m above MSL) for California marshes based on mouth type,

290 perennial open estuaries (open) and intermittently closed estuaries (Intermittent, ICE). MSL is at
291 0 cm. Intermittent marshes are higher in elevation than marshes in always open estuaries (P =

292 0.003).

293

294 *3.2 Closure Scenarios*

295 Using a process-based soil elevation model (WARMER-L) run for 840 scenarios, we determined

that lagoon inlet closure, coupled with delivery and trapping of fluvial sediment, can increase

297 marsh elevations relative to sea-level rise rates when compared with estuaries that do not close.

- 298 More common annual mouth closure and higher sediment delivery resulted in increased marsh
- accretion rates (Fig. 5) and reduced the overall vulnerability of the marsh platform to

submergence from sea-level rise (Fig. 6-8). However, in scenarios with little to no fluvial
sediment delivery, closure decreased marsh elevations due to low accretion rates resulting from
the exclusion of tidal sediment fluxes (Fig. 8A). Marsh accretion rates in scenarios without
closure were not able to build elevations to 'keep pace' with the lowest rates of sea-level rise
(Fig. 6), given the assumptions of a low baseline sediment concentration; however, with closure
occurring only one year in ten (10% annual closure frequency) the marsh was able to keep pace
with slower/historic rates of sea-level rise.

308 *Figure 5.* Average 100-year accretion rate distributions for each model parameter considered

309 *individually. Modeled parameters are ordered from least to most important after variable*

310 importance calculated using random forest and 'caret' package in R. Accretion rates below zero

- 311 indicate marshes that are not keeping pace with sea-level rise after 100 simulated years. For
- 312 each bar with given parameter value, there are multiple simulations due to varying other
- 313 parameter values. Boxes are the first and third quartiles around the median, whiskers are 1.5x
- 314 *the interquartile range, and dots are outliers.*

315

Figure 6. Marsh accretion rate relative to rate of sea-level rise, across a range of sea-level
scenarios, and annual closure frequencies (0, 10, 100%) by 2100. Projected global mean sea
level is between 5.4 mm yr⁻¹ (RCP2.6) and 15 mm yr⁻¹ (RCP8.5) by 2100 (IPCC 2019). Results
from the baseline SSC=7 mg/L, flooding days=6, and sediment pulse = 500 mg/L scenario.

322 We explored a range of parameter values for, sea-level rise, closure frequency and 323 sediment supply. Using a variable importance analysis, we found that the rate of sea-level rise 324 was the single most important factor in determining changes in the relative elevation of the 325 marsh plain after 100 years. Baseline SSC (55% effect relative to SLR), annual closure 326 frequency (50% effect) and sediment pulse concentration (40% effect) all were moderately 327 important factors in determining marsh elevations by 2100. The number of days flooded (0 328 effect) was the least important factor for marsh elevation change that we explored. 329 Closure and fluvial sediment supply interacted to maintain marsh elevation in an ICE under a range of sea-level rise scenarios (Fig. 7). A large sediment pulse associated with high 330

river flow at the time of mouth opening had a positive impact on wetland elevation (Fig. 5) and demonstrates the importance of stochastic sediment delivery events to long-term wetland resilience. In our model, short-lived sediment pulses of ~750 mg L⁻¹ each year were enough to offset very high rates of sea-level rise (15 mm yr⁻¹), while smaller sediment pulses facilitated the accretion of marshes under lower sea-level rise scenarios (Fig. 7C and 7F).

336 Sediment supply effects on accretion rates were largely from sediment pulses that were 337 assumed to occur during storm runoff, which also induces mouth opening processes (Rich & 338 Keller 2013). Baseline suspended sediment concentrations and the duration of marsh inundation during closure had only minor effects on accretion (Fig. 5). In sediment-limited conditions 339 340 (baseline suspended sediment concentration = $2 \text{ mg } \text{L}^{-1}$, no sediment pulse during opening, short 341 wetland inundation = 3 days), sea-level rise overwhelmed marsh accretion processes and closure 342 reduced resilience with total elevations below MSL (Fig. 8A). Sediment-limited conditions could 343 occur when ICEs are opened mechanically and don't have prolonged closure. In sediment-rich 344 conditions (baseline suspended sediment concentration = $7 \text{ mg } \text{L}^{-1}$, sediment pulse during opening 500 mg L^{-1} , long marsh inundation = 24 days), closure can lead to increases in marsh 345 elevation enough to 'keep pace' with sea-level rise as high as 10 mm yr⁻¹ (Fig. 8C). 346

Figure 7. Average rate of net elevation change after 100-year model simulations across sealevel rise and sediment pulse scenarios for baseline suspended sediment concentrations (SSC) of
2 (A-C) and 7 (D-F) mg L⁻¹, 12 days flooded, and an initial elevation of 92 cm above MSL, for an
estuary that is always open (A, D), one that has a 10% chance of being closed in a given year (B,
E), and one that closes for 6 months every year (C, F). Parameter space above the dashed line
shows that positive rates of net elevation change occur in systems with sediment pulses and
regular annual closures.

355

356 *Figure 8.* Difference in simulated elevation from starting elevation over 100 years for estuaries along a **357** closure probability gradient. Overall elevation change over time for A) sediment-starved system (annual **358** days inundated = 3, SSC = 2 mg L⁻¹, sediment pulse = 0 mg L⁻¹); B) sediment-rich system with no **359** sediment pulses during closure process (annual days inundated = 24, SSC = 7 mg L⁻¹, sediment pulse = 0 **360** mg L⁻¹); C) sediment-rich system with sediment pulse during closure process (annual days inundated =

361 24, SSC = 7 mg L⁻¹, sediment pulse = 500 mg L⁻¹). Gray-titled columns within each panel indicate sea362 level rise scenarios. Initial marsh elevation is 92 cm MSL.

363

4. Discussion

365 *4.1 Marsh evolution*

366 Lagoons with bar-built sand barriers that intermittently close are globally distributed and 367 host important diversity and ecological processes that provide many ecosystem services to 368 human communities. Through spatial analysis we show that marshes in ICE that close frequently 369 have higher elevations than similar marshes in bar-built estuaries that are perennially open. This 370 "elevation capital" has been demonstrated as an important factor in long-term persistence with 371 sea-level rise over the coming century (Cahoon et al. 2019, Cahoon and Guntenspergen 2010). If 372 marshes are unable to maintain their elevations when compared with local tides and sea levels, 373 this can lead to elevation deficits, submergence and loss (Thorne et al. 2018). Accretion of 374 marshes is particularly important in ICE given their tendency to occur in small watershed basins 375 with steep topography and limited upland migration space, this may be especially true for 376 urbanized estuaries (Table 1). The relationships among elevation capital, sea-level rise, and 377 accretion are key components to fully understand long term sustainability of these ecosystems.

Marshes are known to maintain an elevation in equilibrium with sea levels by the accumulation of mineral and organic matter (Morris et al. 2002), which is particularly true in estuaries with continuous tidal exchange. Here we used a process-based model that determined that lagoon inlet closure, coupled with sediment supply, can increase accretion rates in marshes sufficiently to match sea-level rise to 2100 – in contrast to estuaries that are perennially open. Some estuaries would naturally be perennially open, but many estuaries have been armored open to prevent closure processes. Through model simulations we show that ICE marshes can persist

under sea-level rise scenarios up to 10 mm/yr when compared with estuaries that didn't close.
However, in scenarios with little to no sediment delivery, closure increased vulnerability of
submergence due to the exclusion of tidal flux sediments. In many ICEs more information needs
to be collected to better inform these generalizations.

389 The dominance of mineral sediments in ICE marsh soils highlights the ability of these 390 lagoons to capture sediment either from watershed or oceanic inputs. For example, in California, 391 marshes tend to be mineral-dominated systems, highlighting the importance of sediment input 392 from riverine or ocean sources (Cahoon et al. 1996; Thorne et al. 2016). Also impacts to the 393 watershed from urbanization and development can change sediment availability for accretion 394 process. In our modeling, large sediment pulses that may occur every year when marshes are 395 inundated during 'natural' berm-breaching flow events result in accretion that can match high 396 rates of sea-level rise. One study at Seal Beach estuary observed sediment pulses of ~100 mg L⁻¹ 397 (400% above the long-term mean) during a relatively mild storm event (Rosencranz et al 2016) 398 demonstrating that stochastic events drive sediment delivery in some areas. It is likely that early 399 winter rainstorms in steep watersheds deliver water and sediment to ICEs at the same time as 400 they are naturally breached, which can supply sediment to the marsh platform. This natural 401 process is weakened if an ICE is manually opened. There is limited observational data regarding 402 the amplitude of sediment pulses to ICEs during these breaching events which are often 403 associated with storms, making it challenging to extrapolate results.

404

405 *4.2 Climate change*

406 Low watershed flows, micro-tide ranges and high wave energy lead to the presence of ICEs407 along coastlines. Both terrestrial and ocean conditions are projected to change over the coming

408 decades from climate change (IPCC 2018). In Victoria, southern Australia two ICEs were shown 409 to be mostly governed by relative tide range to determine the mouth state (Kennedy et al. 2020), 410 whereas mouth open or closure state may also be mostly governed by watershed flows (Hinwood 411 and McLean 2015) or by an interaction of watershed flow and wave height (Behrens et al 2013). 412 Climate change projections for California include more flashy precipitation with extreme dry and 413 wet conditions (Dettinger 2013; Polade et al. 2017; Guirguis et al. 2018, Swain et al. 2018), 414 making it difficult to predict future changes in mouth closure state and watershed inflow amounts 415 to these estuaries.

416 Changes or intensification of storms such as Atmospheric Rivers and El Nino-Southern 417 Oscillation (ENSO), which are important drivers of ICE closures and breaches, could also 418 change the frequency or duration of closures and inflow/sediment influx amounts (Clarke et al. 419 2017; McSweeney et al. 2017b). Stronger storms with increased wave energy could lead to more 420 frequent ICE closures; in southern California an El Nino winter had elevated ocean levels, larger 421 waves, and low precipitation amounts resulting in a greater number of ICE closures (Harvey et 422 al. 2020). Our results provide insight into how marsh elevations may respond to these closure 423 frequency changes, however, future research linking both sea-level rise and changes in storm 424 precipitation to ICE closure and marsh accretion is important.

425 Shifts in ICE closure frequency and duration, changes in tidal prism. and salinity regimes 426 may have significant impacts on marshes biogeomorphic processes due to feedbacks among 427 vegetation and soil building processes. Vegetation is a critical component of soil stability and 428 accretion processes that allow a marsh to build soils vertically to prevent submergence with sea-429 level rise (Morris et al. 2002; Gedan et al. 2011; Kirwan and Guntenspergen 2012). A meta-430 analysis of ICE from Australia, South Africa, and New Zealand showed that currently ICE had

431 significantly lower salinity and mean annual watershed discharge when compared with open 432 estuaries (Lill et al. 2013), highlighting the importance of freshwater inflow and tidal exchange. 433 Changes in freshwater flow and tidal inundation can alter ICE plant communities, especially in 434 areas with flashy weather and frequent mouth closures (e.g., Zedler et al. 1986, Pezeshki 2001). 435 If increasing closure is accompanied by decreasing freshwater input, estuary water levels may 436 drop due to net evaporation and salinities increase so that plant communities may be altered or 437 lost owing to salinity stress, as in high-salinity marshes surrounding the Mediterranean Sea 438 (Ibnez et al. 2002). Conversely, if increasing ICE closure is accompanied by increasing 439 freshwater inflow, plant communities may shift to those more tolerant to frequent submergence 440 and associated flooding stress (DeLaune et al. 1987), with changes in underlying stress gradients 441 (Morzaria-Luna and Zedler 2014). Loss of vegetation biomass often causes erosion, through 442 scour processes and weaker soils (Gyssels et al. 2005), creating positive feedbacks with 443 increased inundation. However, tidal eroded sediment can be redistributed, enhancing accretion 444 in other locations. Our analysis of the elevations of marshes in ICE and perennial open estuaries 445 illustrates the high elevation perched nature of ICE marshes. Perched marshes can become 446 hypersaline through evaporation after saline inundation, resulting in decreased organic 447 production and loss of plant cover. Conversely, a pulse of freshwater can flush salts from the soils, promoting organic production. Projected changes of warming air and less precipitation 448 449 across California (Bedsworth et al. 2018) could create negative organic feedbacks in these high 450 elevation perched marshes.

With increasing closure frequency, and therefore environmental stress from salinity and
inundation, biological communities in ICE can show changes in diversity of benthic and fish
species (Young et al. 1997, Hodgkin and Hesp 1998), altered plankton density and assemblages

454 (Ortega-Cisneros et al. 2014), and/or increased production for fish (Pollard 1994) and nuisance
455 algal blooms (McLaughlin et al. 2014). As closure frequency increases, marsh area and health
456 may also decrease (Hodgkin and Hesp 1998). There is a lack of studies on how changing
457 environmental conditions within ICE could cause cascading impacts to biotic communities.

Uncertainties in the acceleration and magnitude of global mean sea-level is related to 458 459 potential ice mass loss and emission scenarios which can make decision making by managers 460 difficult (Haasnoot et al., 2020, Oppenheimer et al. 2019, IPCC 2019). Here, we addressed a 461 range of sea-level rise scenarios $(2 - 15 \text{ mm yr}^{-1})$ which encompasses the current projected rates for Representative Concentration Pathways (RCP) emission scenarios (Oppenheimer et al. 2019) 462 and the average current rate of sea-level rise of 2 mm yr⁻¹ for California (Board and National 463 464 Research Council, 2012). IPCC (2019) projects global mean sea level will have an average increase of 5.4 mm yr⁻¹ (RCP2.6) to 15 mm yr⁻¹ (RCP8.5) to 2100. Our results demonstrated that 465 466 ICE marshes without mouth closures are at risk of loss under all sea-level rise scenarios (2 - 15)467 mm yr⁻¹) by 2100; but with annual mouth closure the marshes had accretion rates higher then sea-level rise rates up to 10 mm yr⁻¹ (Figure 6). However, sea-level rise will continue to rise and 468 469 accelerate over the coming centuries posing challenges to ICE worldwide. Thus, the method and 470 results presented here should be reassessed as new research emerges regarding sea levels and 471 atmospheric warming.

472

473 *4.3 Human impacts and management intervention*

Global coastlines and ICEs have been impacted by human development and
modifications to the landscape (Kent and Mast 2005), but they continue to provide important
biological and economic resources to local communities. Impacts to ICE coastlines include land

477 development, nutrient and pollution runoff, and hardening of shorelines (Page et al. 1995). 478 Penasquitos Lagoon, California is an ICE that closes annually; historically freshwater would 479 have only flowed into the estuary during winter months, but due to urbanization the lagoon 480 experiences year round freshwater runoff and flows (Williams et al. 1998). This freshwater and 481 nutrient inflow has transitioned the plant community from salt tolerant emergent species to 482 freshwater wetlands and riparian ecosystems (Williams et al. 1998). Watershed flow plays a 483 critical role on the seasonal and episodic ICE opening and closures processes, with some ICE 484 experiencing reduced freshwater inflow due to water capture upstream by dams or weirs, water 485 diversion and extraction, or sediment infilling of the estuary (Zedler 1996). Hydrological 486 changes to ICE can alter the marsh accretion processes and mouth closure predictability.

487 Many estuaries have been hardened to stabilize the mouth opening to prevent closing of 488 the lagoon to reduce localized flooding and other non-desirable conditions, such as eutrophic 489 conditions (Heady et al. 2015). However, our results highlight the threat of sea-level rise for 490 marshes that do not have closure potential – as well as those that are hardened by human 491 development that prevent natural closure processes (Kent and Mast 2005, Thorne et al. 2018). 492 ICEs are often opened mechanically before lagoon water levels rise to the level that would occur 493 prior to natural breaches (Kraus et al. 2008, Largier et al 2019), therefore reducing the number of 494 days it is closed which will reduce marsh flooding and the trapping of watershed sediments for 495 accretion. For example, the Russian River ICE in northern California is mechanically opened as 496 a flood control measure which reduces the inundation of the marsh (Behrens et al. 2013). In 497 contrast, persistent ICE closure in hot/dry conditions of southern California can create low water 498 levels that do not flood the marsh plain (Clark and O'Connor 2019). Additional, management 499 concerns of prolonged closure include eutrophic conditions and poor water quality (e.g., low

dissolved oxygen, nutrient laden [Hadwen et al. 2007, Largier et al 2015, 2018; Crooks et al
2018] nuisance algal blooms [McLaughlin et al. 2014; Fong and Zedler 2000]), lowland flooding
(Orescanin and Schooler 2018), loss of benthic and fish species (Wooldridge 1994; Hodgkin and
Hesp 1998), and increased mosquito populations that are disease vectors (Gersberg et al. 1995).
However, mechanical opening of lagoon mouths during a closures phase may reduce available
sediment for marsh accretion and reduce the resiliency to sea-level rise.

506 Site-specific studies are needed to fully understand the tradeoffs between marsh-accretion 507 benefits of allowing ICEs to remain closed and the mitigating negative impacts of human 508 alterations that tidal flushing provides (Largier et al 2019). There are several key processes that 509 require further study and would improve understanding and projections. A better understanding 510 is needed of how sea-level rise and changes in storm intensity will affect: (i) mouth closure 511 dynamics; this is a primary determinant on marsh accretion; (ii) the probability, intensity and 512 timing of sediment pulses that fill the estuary prior to mouth breaching; (iii) how the gradient of 513 mouth closure types (i.e., fully tidal, muted tidal, perched, or closed) may influence flooding and 514 accretion across marshes; and (iv) how vegetation type and density will change with shifts in 515 ICE closure frequency and duration. Also, the tendency to mechanically open ICE to reduce 516 biological and societal impacts should be weighted with possible negative impacts to marsh 517 accretion processes.

518

519 **5.** Conclusion

520

521 Our modeling approach provides insight into how the elevation of ICE marshes may respond to522 sea-level rise under a range of scenarios. We demonstrate that inlet closures can increase marsh

accretion and build resilience to sea-level rise and prevent submergence, when coupled with
sediment delivery events. When considering sea-level rise, maintaining the possibility of inlet
closure and 'natural' breach events is important to allow water levels to rise and inundate high
marshes, which is necessary for building or maintaining marsh elevations and thus resilience.
This implies a need to assess the trade-offs in how land-use management affects tidal prism and
marsh processes. Our results indicate an important topic for management consideration and
further research needs.

531 Acknowledgments

Funding for this project was provided by the NOAA National Centers for Coastal Ocean Science Ecological Effects of Sea Level Rise program (NA16NOS4780205). This research was also supported by California State Coastal Conservancy, U.S. Geological Survey Western Ecological Research Center, and University of California, Davis Center for Aquatic Biology and Aquaculture, and the John Muir Institute of the Environment. Valuable input was provided by multiple peer-reviewers, including S. Winter, D. Behrens, D. Elam and anonymous reviewers. Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. government.

547	
548	Bedsworth L, Cayan D, Franco G, Fisher L, Ziaja S. 2018. California's Fourth Climate
549	Change Assessment: Statewide Summary Report. California Governor's Office of Planning
550	and Research, Scripps Institution of Oceanography, California Energy Commission,
551	California Public Utilities Commission. Publication number: SUM¬CCCA4-2018-013.
552	
553	Behrens DK, Bombardelli FA, Largier JL, Twohy E. 2013. Episodic closure of the tidal inlet
554	at the mouth of the Russian River — A small bar-built estuary in California. <i>Geomorphology</i>
555	18 : 66–80.
556	
557	Behrens D, Brennan M, Battalio B. 2015. A quantified conceptual model of inlet morphology
558	and associated lagoon hydrology. Shore & Beach 83(3): 33-42.
559	
560	Bertrán C, Vargas-Chacoff L, Peña-Cortés F, Mulsow S, Tapia J, Hauenstein E, Schlatter R,
561	Bravo A. 2006. Benthic macrofauna of three saline-lake wetlands on the coastal rim of
562	southern Chile. Ciencias Marinas 32: 589–96.
563	
564	Board, O.S. and National Research Council, 2012. Sea-level rise for the coasts of California,
565	Oregon, and Washington: past, present, and future. National Academies Press.
566	
567	Bonaduce, A, Pinardi, N, Oddo, P, Spada, G, Larnicol, G. 2016. Sea-level variability in the
568	Mediterranean Sea from altimetry and tide gauges. <i>Climate Dynamics</i> , 47 (9-10): 2851-2866.

References

570	Brander LM, Florax RJ, Vermaat JE. 2006. The empirics of wetland valuation: a
571	comprehensive summary and a meta-analysis of the literature. Environmental and Resource
572	<i>Economics</i> 33 : 223–50.
573	
574	Buffington KJ, Dugger B, Thorne K, Takekawa J. 2016. Statistical correction of lidar-
575	derived digital elevation models with multispectral airborne imagery in tidal marshes.
576	Remote Sensing of Environment, 186.
577	
578	Cahoon DR, Guntenspergen GR. 2010. Climate change, sea-level rise, and coastal wetlands.
579	National Wetlands Newsletter 32 (1): 8-12.
580	
581	Cahoon DR, Hensel PF, Spencer T, Reed DJ, McKee KL, Saintilan N. 2006. Coastal wetland
582	vulnerability to relative sea-level rise: wetland elevation trends and process controls. In:
583	Wetlands and Natural Resource Management: 271-292. Springer, Berlin, Heidelberg.
584	
585	Cahoon DR, Lynch JC, Roman CT et al. 2019. Evaluating the Relationship Among Wetland
586	Vertical Development, Elevation Capital, Sea-Level Rise, and Tidal Marsh Sustainability.
587	Estuaries and Coasts 42, 1–15
588	
589	Callaway JC, Borgnis E, Turner R, Milan C. 2012. Carbon sequestration and sediment
590	accretion in San Francisco Bay tidal wetlands. Estuaries and Coasts 35: 1163-1181.
591	

592	Christiansen T, Wiberg P, Milligan T. 2000. Flow and sediment transport on a tidal salt
593	marsh surface. Estuarine, Coastal and Shelf Science 50: 315–31.
594	
595	Clark R, O'Connor K. 2019. A systematic survey of bar-build estuaries along the California
596	coast. Estuarine, Coastal and Shelf Science 226: 106285.
597	
598	Clarke DW, Boyle JF, and Plater AJ. 2017. Particle-size evidence of barrier estuary regime
599	as a new proxy for ENSO climate variability. Earth Surface Processes and Landforms 42:
600	1520–34.
601	
602	Cohen A, Harris L, Bingham B, Carlton JT, Chapman JW, Lambert CC, Lambert G,
603	Ljubenkov JC, Murray SN, Rao LC, Reardon K. 2005. Rapid assessment survey for exotic
604	organisms in southern California bays and harbors, and abundance in port and non-port areas.
605	Biological Invasions 7: 995–1002.
606	
607	Crooks J, McCollough J, Almeida M, Uyeda K. 2018. The Physical, Chemical and
608	Biological Monitoring of Los Penasquitos Lagoon July 2017 - June 2018. Report to Los
609	Penasquitos Lagoon Foundation, 63pp.
610	
611	Day J.H. 1981. The nature, origin and classification of estuaries. In: Estuarine Ecology: With
612	Particular Reference to Southern Africa: 1-6. Balkema, Rotterdam.
613	

614	DeLaune R, Pezeshki S, and Patrick Jr W. 1987. Response of coastal plants to increase in
615	submergence and salinity. Journal of Coastal Research: 535-46.
616	
617	de Lecea A, Green AN, Cooper A. 2016. Environmental change during the Pleistocene and
618	Holocene: Estuaries and lagoons of southern Africa. In: Quaternary environmental change in
619	Southern Africa: Physical and human dimensions: 219-233. Cambridge University Press.
620	
621	Dettinger MD. 2013. Atmospheric rivers as drought busters on the US West Coast. Journal
622	of Hydrometeorology 14: 1721–32.
623	
624	Elwany M. 2011. Characteristics, restoration, and enhancement of southern California
625	lagoons. Journal of Coastal Research Special Issue 59: 246-55.
626	
627	Elwany MHS, Flick RE, Aijaz S. 1998. Opening and closure of a marginal southern
628	California lagoon inlet. Estuaries 21: 246–54.
629	
630	Fong P, Zedler J. 2000. Sources, sinks, and fluxes of nutrients (N + P) in a small highly
631	modified urban estuary in southern California. Urban Ecosystems 4: 125-144.
632	
633	Gedan KB, Kirwan ML, Wolanski E, et al. 2011. The present and future role of coastal
634	wetland vegetation in protecting shorelines: answering recent challenges to the paradigm.
635	Climatic Change 106: 7–29.
636	

637	Gersberg RM, Matkovits M, Dodge D, McPherson T, Boland JM. 1995. Experimental
638	opening of a coastal California lagoon: effect on bacteriological quality of recreational ocean
639	waters. Journal of Environmental Health 58(2): 24-30.
640	
641	Gittman RK, Fodrie FJ, Popowich AM, Keller DA, Bruno JF, Currin CA, Peterson CH,
642	Piehler MF. 2015. Engineering away our natural defenses: an analysis of shoreline hardening
643	in the US. Frontiers in Ecology and the Environment 13: 301–307.
644	
645	Guirguis K, Gershunov A, Cayan DR, and Pierce DW. 2018. Heat wave probability in the
646	changing climate of the Southwest US. Climate Dynamics 50: 3853-64.
647	
648	Gyssels G, Poesen J, Bochet E, and Li Y. 2005. Impact of plant roots on the resistance of
649	soils to erosion by water: a review. Progress in Physical Geography 29: 189–217.
650	
651	Hadwen WL, Arthington AH. 2007. Food webs of two intermittently open estuaries
652	receiving ¹⁵ N-enriched sewage effluent. Estuarine, Coastal and Shelf Science 71(1-2): 347-
653	358.
654	
655	Harvey M, Giddings SN, Stein ED, Crooks JA, et al 2020. Effects of elevated sea level and
656	storm waves on southern California estuaries during the 2015-2016 El Nino, Estuaries and
657	<i>Coasts</i> 43 : 256-271.
658	He L-ML, He Z-L. 2008. Water quality prediction of marine recreational beaches receiving
659	watershed baseflow and stormwater runoff in southern California, USA. Water research 42:
660	2563–2573.

662	
663	Heady WN, O'Connor K, Kassakian J, Doiron K, Endris C, Hudgens D, Clark RP, Carter J,
664	Gleason MG. 2014. An Inventory and Classification of U.S. West Coast Estuaries. The
665	Nature Conservancy, Arlington, VA. 81pp.
666	
667	Heady WN, Clark RP, O'Connor K, Clark C, Endris C, Ryan S, S Stoner-Duncan. 2015.
668	Assessing California's bar-built estuaries using the California Rapid Assessment Method.
669	Ecological Indicators 58:300-310.
670	
671	Hinson AL, Feagin R, Eriksson M, Najjar R, Herrmann M, Bianchi T, Kemp M, Hutchings J,
672	Crooks S, Boutton T. 2017. The spatial distribution of soil organic carbon in tidal wetlands
673	soils of the continental United States. Global Change Biology 23: 5468-5480.
674	
675	Hinwood JB, McLean EJ. 2015. Predicting the dynamics of intermittently closed/open
676	estuaries using attractors. Coastal Engineering 99: 64-72.
677	
678	Hodgkin EP, Hesp P. 1998. Estuaries to salt lakes: Holocene transformation of the estuarine
679	ecosystems of south-western Australia. Marine and Freshwater Research 49: 183-201.
680	
681	Ibnez C, Curco A, Jr. JW Day, and Prat N. 2002. Structure and productivity of microtidal
682	Mediterranean coastal marshes. In:Weinstein, M.P. and Kreeger, D.A. (Ed). Concepts and
683	Controversies in Tidal Marsh Ecology.

685	IPCC, 2018: Global warming of 1.5°C. An IPCC Special Report on the impacts of global
686	warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission
687	pathways, in the context of strengthening the global response to the threat of climate change,
688	sustainable development, and efforts to eradicate poverty [V. Masson-Delmotte, P. Zhai, H.
689	O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R.
690	Pidcock, S. Connors, J. B. R. Matthews, Y. Chen, X. Zhou, M. I. Gomis, E. Lonnoy, T.
691	Maycock, M. Tignor, T. Waterfield (eds.)].
692	
693	IPCC, 2019: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate [HO.
694	Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck,
695	A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, N.M. Weyer (eds.)]. In press.
696	
697	James NC, Cowley PD, Whitfield AK, Lamberth SJ. 2007. Fish communities in temporarily
698	open/closed estuaries from the warm-and cool-temperate regions of South Africa: A review.
699	Reviews in Fish Biology and Fisheries 17: 565–80.
700	
701	Kennedy DM, McSweeney SL, Mariani M, Zavadil E. 2020. The geomorphology and
702	evolution of intermittently open and closed estuaries in large embayments in Victoria,
703	Australia. Geomorphology 350: 106892.
704	

705	Kent B, Mast J. 2005. Wetland change analysis of San Dieguito Lagoon, California, USA:
706	1928-1994. Wetlands 25:780.
707	
708	Kirwan ML, Guntenspergen GR. 2012. Feedbacks between inundation, root production, and
709	shoot growth in a rapidly submerging brackish marsh. Journal of Ecology 100: 764–70.
710	
711	Kirwan ML, Guntenspergen GR, D'Alpaos A, Morris JT, Mudd SM, Temmerman S. 2010.
712	Limits on the adaptability of coastal marshes to rising sea level. Geophysical Research
713	Letters 37: L23401.
714	
715	Kraus NC, Patsch K, Munger S. 2008. Barrier beach breaching from the lagoon side, with
716	reference to Northern California. Shore & Beach 76(2): 33-43.
717	
718	Largier, J., D. Behrens, K. Hewett, M. Koohafkan, M. Robart, D. Dann, and R. Roettger,
719	2020. Managing the mouth of the Russian River Estuary, California.
720	In: Complex Coastal Systems – Transdisciplinary Learning on International Case Studies.
721	J.Slinger, S. Taljaard, F. d'Hont (eds), Delft Academic Press, pp 71-86.
722	
723	Largier J, O'Connor K, Clark R. 2019. Considerations for Management of the Mouth State of
724	California's Bar-built Estuaries. Report to Pacific States Marine Fisheries Commission and
725	NOAA/NMFS. 57pp.
726	

727	Largier, J. L., R. E. Roettger and K. M. Hewett. 2018. Dissolved Oxygen in Pescadero
728	Lagoon. Prepared for Regional Water Quality Control Board.
729	
730	Largier, J. L., I. W. Aiello, D. Jacobs, J. Lacy, C. Pallud, M. T. Stacey, S. M. Carlson, E.
731	Huber and C.M. Bowles. 2015. Report of Pescadero Lagoon Science Panel. Prepared for
732	California State Parks, 48pages.
733	
734	Leonard LA, Luther ME. 1995. Flow hydrodynamics in tidal marsh canopies. Limnology and
735	<i>oceanography</i> 40 : 1474–84.
736	
737	Lill AWT, Schallenberg M, Lal A, Savage C, Closs GP. 2013. Isolation and connectivity:
738	Relationships between periodic connection to the ocean and environmental variables in
739	intermittently closed estuaries. Estuarine, Coastal and Shelf Science 128: 76-83.
740	
741	Marani M, D'Alpaos A, Lanzoni S, Carniello L, Rinaldo A. 2010. The importance of being
742	coupled: Stable states and catastrophic shifts in tidal biomorphodynamics. Journal of
743	Geophysical Research: Earth Surface 115: F4.
744	
745	Mather A, Garland G, Stretch D. 2009. Southern African sea levels: corrections, influences
746	and trends. African Journal of Marine Science, 31 (2): 145-156.
747	
748	McLaughlin K, Sutula M, Buss L, Anderson S, Crooks J, Dagit R, Givson D, Johnston K,
749	Stratton L. 2014. A regional survey of the extent and magnitude of eutrophication in

750	Mediterranean estuaries of southern California, USA. Estuaries and Coasts 37:259-278.
751	
752	McSweeney S, Kennedy D, Rutherfurd I. 2017a. A geomorphic classification of
753	intermittently open/closed estuaries (IOCE) derived from estuaries in Victoria, Australia.
754	Progress in Physical Geography: Earth and Environment 41 (4): 421-449.
755	
756	McSweeney S, Kennedy D, Rutherfurd I, Stout J. 2017b. Intermittently Closed/Open Lakes
757	and Lagoons: Their global distribution and boundary conditions. Geomorphology 292: 142-
758	152.
759	
760	Morris JT, Sundareshwar P, Nietch CT, Kjerfve B, Cahoon DR. 2002. Responses of coastal
761	wetlands to rising sea level. <i>Ecology</i> 83 : 2869–77.
762	
763	Morris B, Turner I. 2010. Morphodynamics of intermittently open-closed coastal lagoon
764	entrances: new insights and a conceptual model. Marine Geology 271: 55-66.
765	
766	Möller I. 2006. Quantifying saltmarsh vegetation and its effect on wave height dissipation:
767	Results from a UK East coast saltmarsh. Estuarine, Coastal and Shelf Science 69: 337–51.
769	Margaria Luna IIN and Zadlar ID 2014. Commetitive Interactions Detwoon Two Solt Marsh
/00	Morzana-Luna HN and Zedier JB. 2014. Competitive interactions between 1 wo Sait Marsh
769	Halophytes Across Stress Gradients. Wetlands 34: 31-42.

770	Mudd SM, D'Alpaos A, Morris JT. 2010. How does vegetation affect sedimentation on tidal
771	marshes? Investigating particle capture and hydrodynamic controls on biologically mediated
772	sedimentation. Journal of Geophysical Research 115: F03029.
773	NOAA National Ocean Service Office for Coastal Management. 2012. 2009 – 2011 CA
774	Coastal Conservancy Coastal Lidar Project: Hydro-flattened Bare Earth DEM. NOAA
775	Office for Coastal Management, Charleston, SC, USA. Viewed March 2019.
776	
777	Oppenheimer, M., B.C. Glavovic, J. Hinkel, R. van de Wal, A.K. Magnan, A. Abd-Elgawad,
778	R. Cai, M. Cifuentes-Jara, R.M. DeConto, T. Ghosh, J. Hay, F. Isla, B. Marzeion, B.
779	Meyssignac, and Z. Sebesvari, 2019: Sea Level Rise and Implications for Low-Lying Islands,
780	Coasts and Communities Supplementary Material. In: IPCC Special Report on the Ocean and
781	Cryosphere in a Changing Climate [HO. Pörtner, D.C. Roberts, V. Masson-Delmotte, P.
782	Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J.
783	Petzold, B. Rama, N.M. Weyer (eds.)]. In press.
784	
785	Orescanin MM, Scooler J. 2018. Observations of episodic breaching and closure at an
786	ephemeral river. Continental Shelf Research 166: 77-82.
787	
788	Ortega-Cisneros K, Scharler U, Whitfield A. 2014. Inlet mouth phase influences density,
789	variability and standing stocks of plankton assemblages in temporarily open/closed estuaries.
790	Estuarine, Coastal and Shelf Science 136: 139-148.
791	

792	Page HM, Petty RL, and Meade DE. 1995. Influence of watershed runoff on nutrient
793	dynamics in a Southern California salt marsh. Estuarine, Coastal and Shelf Science 41: 163-
794	80.
795	
796	Pezeshki S.R. 2001. Wetland plant responses to soil flooding. Environmental and
797	Experimental Botany 46: 299-312.
798	
799	Pérez-Ruzafa A, Marcos C, Pérez-Ruzafa I. 2011. Mediterranean coastal lagoons in an
800	ecosystem and aquatic resources management context. Physics and Chemistry of the Earth,
801	Parts A/B/C 36: 160–166.
802	
803	Polade SD, Gershunov A, Cayan DR, et al. 2017. Precipitation in a warming world:
804	Assessing projected hydro-climate changes in California and other Mediterranean climate
805	regions. Scientific Reports 7.
806	
807	Pollard D. 1994. A comparison of fish assemblages and fisheries in intermittently open and
808	permanently open coastal lagoons on the south coast of New South Wales, south-eastern
809	Australia. Estuaries 17: 631.
810	
811	R Core Team. 2016. R: a language and environment for statistical computing. Vienna,
812	Austria.
813	

814	Reed DJ. 1995. The response of coastal marshes to sea-level rise: Survival or submergence?
815	Earth Surface Processes and Landforms 20: 39–48.
816	
817	Rich A, Keller EA. 2013. A hydrologic and geomorphic model of estuary breaching and
818	closure. <i>Geomorphology</i> 191 : 64–74.
819	
820	Rojas O, Mardones M, Martínez C, Flores L, Sáez K, Araneda A. 2018. Flooding in Central
821	Chile: Implications of Tides and Sea Level Increase in the 21stCentury. <i>Sustainability</i> 10 (12):
822	4335.
823 •	Rosencranz, J.A., N.K. Ganju, R.F. Ambrose. S.M. Brosnahan, P.J. Dickhudt, G.M.
824	MacDonald, J.Y. Takekawa, and K.M. Thorne. 2015. Balanced sediment flux in southern
825	California's Mediterranean-climate salt marshes. Estuaries and Coasts, DOI
826	10.1007/s12237-015-0056-y
827	
828	
829	Schallenberg M, Larned ST, Hayward S, Arbuckle C. 2010. Contrasting effects of managed
830	opening regimes on water quality in two intermittently closed and open coastal lakes.
831	Estuarine, Coastal and Shelf Science 86(4): 587-597.
832	
833	Schile L, Callaway J, Morris J, Stralberg D, Parker VT, Kelly M. 2014. Modeling tidal marsh
834	distribution with sea-level rise: evaluating the role of vegetation, sediment, and upland
835	habitat in marsh resiliency. PloS one 9(2): e88760.
836	

837	Stretch D, Parkinson M. 2006. The breaching of sand barriers at perched, temporary
838	open/closed estuaries – A model study. Coastal Engineering Journal 48(1): 13-30.
839	
840	Swain DL, Langenbrunner B, Neelin JD, and Hall A. 2018. Increasing precipitation volatility
841	in twenty-first-century California. Nature Climate Change 8: 427.
842	
843	Swanson KM, Drexler JZ, Schoellhamer DH, Thorne KM, Casazza ML, Overton CT,
844	Callaway JC, Takekawa JY. 2014. Wetland accretion rate model of ecosystem resilience
845	(WARMER) and its application to habitat sustainability for endangered species in the San
846	Francisco Estuary. Estuaries and Coasts 37: 476–492.
847	
848	Thorne K, MacDonald G, Guntenspergen G, Ambrose R, Buffington K, Dugger B, Freeman
849	C, Janousek C, Brown L, Rosencranz J, Holmquist J. 2018. US Pacific coastal wetland
850	resilience and vulnerability to sea-level rise. Science Advances 4(2): eaao3270.
851	
852	Tran T, Nguyen XH, Huynh TLH, Tran VT, Duong NT, Doan TTH. 2017. Estimating sea
853	level rise for Vietnam East Sea. Vietnam Journal of Science, Technology and
854	<i>Engineering</i> 59 (1): 73-78.
855	
856	White NJ, Haigh ID, Church JA, Koen T, Watson CS, Pritchard TR, Watson PJ, Burgette RJ,
857	McInnes KL, You ZJ, Zhang X. 2014. Australian sea levels-Trends, regional variability and
858	influencing factors. Earth-Science Reviews, 136: 155-174.
859	

860	Whitfield AK, Bate G, Adams J, Cowley PD, Froneman PW, Gama PT, Strydom NA,
861	Taljaard S, Theron AK, Turpie JK, Van Niekerk L. 2012. A review of the ecology and
862	management of temporarily open/closed estuaries in South Africa, with particular emphasis
863	on river flow and mouth state as primary drivers of these systems. African Journal of Marine
864	<i>Science</i> 34 : 163–180.
865	
866	Whitfield AK, Elliott M. 2012. Ecosystem and biotic classifications of estuaries and coasts.
867	In: Treatise on Estuaries and Coasts. Elsevier, Amsterdam.
868	
869	Williams G, Noe G, and Desmond J. 1998. The physical, chemical, and biological
870	monitoring of Los Peñasquitos Lagoon, 1997-98. Final report prepared for the Los
871	Peñasquitos Lagoon Foundation.
070	Winter SA 2020 An Investigation of the Closure Degimes of California's Per Puilt Estuaries
012	whiter SA, 2020. All investigation of the Closure Regimes of Cantonna's Bar-Bunt Estuartes
873	MS Thesis, University of California Davis, 83pp.
874	
875	Wooldridge T.H. 1994. The effect of periodic inlet closure on recruitment in the estuarine
876	mudprawn. In: Changes in Fluxes in Estuaries: 329-333. Olsen & Olsen, Fredensborg,
877	Denmark.
878	
879	Young GC, Potter IC, Hyndes GA, de Lestag S. 1997. The ichthyofauna of an intermittently
880	open estuary: Implications of bar breaching and low salinities on faunal composition.
881	Estuarine, Coastal and Shelf Science 45(1): 53-68.
882	

884	restoration strategy. Ecological Applications 6:84-93.
885	
886	Zedler JB, Covin J, Nordby C, et al. 1986. Catastrophic events reveal the dynamic nature of
887	salt-marsh vegetation in southern California. Estuaries and Coasts 9: 75-80.
888	
889	
890	
891	

Zedler JB. 1996. Coastal mitigation in southern California: The need for a regional